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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of
dopaminergic neurons and the aggregation of Lewy bodies in the basal ganglia, resulting in movement
impairment referred to as parkinsonism. However, the etiology of PD is not well known, with genetic
factors accounting only for 10–15% of all PD cases. The pathogenetic mechanism of PD is not
completely understood, although several mechanisms, such as oxidative stress and inflammation,
have been suggested. Understanding the mechanisms of PD pathogenesis is critical for developing
highly efficacious therapeutics. In the PD brain, dopaminergic neurons degenerate mainly in the
basal ganglia, but recently emerging evidence has shown that astrocytes also significantly contribute
to dopaminergic neuronal death. In this review, we discuss the role of astrocytes in PD pathogenesis
due to mutations in α-synuclein (PARK1), DJ-1 (PARK7), parkin (PARK2), leucine-rich repeat kinase
2 (LRRK2, PARK8), and PTEN-induced kinase 1 (PINK1, PARK6). We also discuss PD experimental
models using neurotoxins, such as paraquat, rotenone, 6-hydroxydopamine, and MPTP/MPP+. A
more precise and comprehensive understanding of astrocytes’ modulatory roles in dopaminergic
neurodegeneration in PD will help develop novel strategies for effective PD therapeutics.

Keywords: astrocytes; Parkinson’s disease; α-synuclein; DJ-1; parkin; LRRK2; MPTP; paraquat;
rotenone; 6-hydroxydopamine

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disease characterized by the loss
of dopaminergic neurons in the nigrostriatal pathway and the formation of α-synuclein
aggregates (Lewy bodies) in neurons. At the clinical level, the disease is characterized by
bradykinesia, gait impairment, tremor, and loss of involuntary movement [1]. PD is the
second most prevalent neurodegenerative disease after Alzheimer’s disease (AD), affecting
over a million Americans and causing a total economic burden in the U.S. of $51.9 billion
in 2017 [2]. The etiology of PD is not well understood, but several factors appear to play
a role, including gene dysfunctions and mutations. It has been shown that mutations
in genes, such as leucine-rich repeat kinase 2 (LRRK2), α-synuclein, PTEN-induced ki-
nase 1 (PINK1), and parkin, are linked to familial PD cases, but these account for only
10–15% of total PD cases (Table 1) [3]. Several cases of idiopathic PD have implicated that
environmental factors, such as the pesticide rotenone and herbicide paraquat, contribute to
PD development [4].

Numerous studies have investigated the molecular and cellular mechanisms under-
lying PD pathogenesis. Oxidative stress, inflammation, mitochondrial impairment, and
dysregulation of autophagy and mitophagy have been reported in both in vitro and in vivo
PD models [18–22]. Although dopaminergic neurodegeneration in the basal ganglia is the
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main feature of PD, other neural cell types, including astrocytes, have been shown to play
a role in PD development [23].

Table 1. Astrocytes contribute to PD pathology in a variety of PD mutants.

Gene Protein Function Mode of Inheritance Time of Onset * References

SNCA α-synuclein Glutamate transport,
inflammatory response Autosomal dominant Early [5–7]

PARK2 Parkin Inflammatory response,
mitochondrial function Autosomal recessive Early [8,9]

PARK6 PINK1 Mitochondrial function Autosomal recessive Early [10]

PARK7 DJ-1
Glutamate uptake,

inflammatory response,
mitochondrial function

Autosomal recessive Early [11–13]

PARK8 LRRK2 Autophagy, Lysosome function Autosomal dominant Late [14,15]

PARK9 ATP13A2 Inflammatory response,
Lysosome function Autosomal recessive Early [16]

GBA GCase
(Glucocerebrosidase) Autophagy, Lysosome function Autosomal recessive Late [17]

* Early onset, ages 21–50; late-onset, ages older than 50.

Astrocytes were first described in the 19th century by Rudolf Virchow [24] and initially
thought to function only in the maintenance and structural support for neurons, but recent
studies have shown that astrocytes play a critical role in neurotransmitter homeostasis
and synapse formation during development, potassium buffering, and maintenance of
pH and the vascular lumen, just to name a few of their functions [25]. Accordingly, it is
not surprising that they are implicated in multiple neurological disorders, including PD
pathogenesis and progression [26,27]. Hence, studying the functional role of astrocytes is
important for understanding the full spectrum of PD pathogenesis and for the development
of novel therapeutic strategies to treat PD. In this review, we discuss the role of astrocytes
in both genetic and neurotoxins-induced PD pathology, as well as potential neuroprotective
strategies targeting astrocytes in PD.

2. Role of Astrocytes in PD-Related Gene Mutations-Induced Pathology
2.1. DJ-1

DJ-1 is encoded by the PARK7 gene, and its mutations are one of the causes of
autosomal-recessive PD [28–30]. DJ-1 is expressed abundantly in astrocytes compared
to neurons, and it is further upregulated in reactive astrocytes in chronic neurodegenerative
disorders, including PD [31,32]. DJ-1 is associated with lipid rafts in astrocytic plasma
membranes [11]. Lipid rafts are involved in many cellular signaling processes, such as
membrane receptor trafficking, endocytosis, and signal transduction [33]. Deficient DJ-1
activity due to PARK7 gene mutation increases the degradation of the lipid raft proteins
and, thus, disrupts lipid raft assembly [12]. DJ-1-deficient astrocytes display impaired glu-
tamate uptake [12] since astrocytic glutamate transporter excitatory amino acid transporter
2 (EAAT2) protein is assembled in lipid rafts [34]. In turn, EAAT2 dysfunction leads to
excess levels of synaptic glutamate and excitotoxic neuronal injury, which is related to
a variety of neurodegenerative diseases [35], including PD. Lipid rafts are also involved
in astrocytic immune responses to inflammatory stimulation, and thus, the disruption
of lipid raft assembly in DJ-1 deficient astrocytes could increase inflammatory cytokine
production in response to lipopolysaccharide (LPS) [11,36] and increase neuronal toxic-
ity. The role of astrocytic DJ-1 in PD is supported by experimental PD models. Studies
have shown that neurotoxic effects induced by PD toxicant models, such as rotenone and
6-hydroxydopamine (6-OHDA), caused greater cytotoxicity to neurons when co-cultured
with DJ-1 deficient-astrocytes than those with wild-type (WT) astrocytes [37,38]. Moreover,
overexpression of DJ-1 in astrocytes affords neuroprotection against rotenone toxicity [37].
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In addition to its role in lipid raft signaling and glutamate uptake in the plasma
membrane, astrocytic DJ-1 is critically involved in maintaining normal mitochondrial
function as well as slowing PD progression by modulating mitochondrial motility and
fission [39]. Studies have shown that mitochondrial dysfunction in astrocytes is closely
associated with aberrant glutamate metabolism and excitotoxicity [40–42], suggesting
that DJ-1 function in mitochondria may be inter-regulated with glutamate transporter in
astrocytes. Moreover, the effect of DJ-1 dysfunction on mitochondria caused intracellular
oxidative stress, activating the antioxidant transcription factor nuclear factor erythroid
2-related factor (Nrf2) and Nrf2’s target genes [41,43,44]. Additionally, DJ-1 deficiency
induces inflammatory activation in astrocytes [45]. It also impairs monocyte infiltration
into the damaged brain owing to a decrease in the astrocyte-specific chemokine, chemokine
(C-C motif) ligand 2 (CCL2) levels in mice [46], resulting in further inflammation and the
delay of neuronal repair.

2.2. α-Synuclein

The α-Synuclein is encoded by the SNCA gene, and the aggregates of this protein
caused by its mutations are a pathological hallmark of PD. The role of α-synuclein ag-
gregates in neurons has been extensively studied [47], but their spreading to adjacent
astrocytes and, thus, consequential toxic effects via astrocytes remain largely unexplored.
The α-synuclein is predominantly expressed in presynaptic nerve terminals, playing an
important role as a molecular chaperone in providing an adequate supply of synaptic
vesicles in presynaptic terminals, assisting in the folding and refolding of synaptic SNARE
proteins, the release of neurotransmitters, such as dopamine, and synaptic integrity [48], to
name a few of its functions.

Astrocytes are essential for fatty acid metabolism in the brain [49]. Although the abun-
dance of α-synuclein in astrocytes is low in comparison to neurons [50], it has been shown
to play a role in fatty acid metabolism, which is important in energy homeostasis, mem-
brane maintenance, and cell signaling. These suggest that α-synuclein may regulate fatty
acid metabolism in astrocytes. Studies have shown that α-synuclein deficiency decreased
the rate of arachidonic acid and palmitic acid metabolism in astrocytes, suggesting that
α-synuclein and lipid metabolism in astrocytes may be implicated in PD pathology [51–53].

That astrocytes regulate exogenous α-synuclein is supported by the finding that
α-synuclein-containing inclusions were found in astrocytes of postmortem PD brains [54].
Astrocytes take up α-synuclein secreted from neurons [55] via a toll-like receptor 4 (TLR4)-
independent endocytosis pathway [5] and localize this abnormal protein into the lyso-
somes [56], suggesting that astrocytes have a role in its removal and degradation. Moreover,
high levels of extracellular α-synuclein have been shown to induce a TLR4-dependent
inflammatory response in primary astrocyte cultures [5], indicating a possible role of as-
trocytes in α-synuclein-induced inflammatory PD pathology. This accumulated astrocytic
α-synuclein may dysregulate critical astrocytic functions, such as glutamate uptake, by
decreasing the expression of the astrocytic glutamate transporters, glutamate-aspartate
transporter (GLAST, EAAT1 in human), and glutamate transporter 1 (GLT-1, EAAT2 in
human), as well as blood–brain barrier (BBB) integrity by disrupting the localization of the
water channel Aquaporin-4 (AQP4). Mice, in which mutant α-synuclein was specifically
overexpressed in astrocytes, developed astrogliosis prior to the onset of symptoms with
dopaminergic neurodegeneration in substantia nigra pars compacta [6].

Since the α-synuclein aggregates are injurious pathologic factors in PD progression,
several therapeutic interventions using astrocytes have been developed to effectively
eliminate them. Studies on neuron-astrocyte co-cultures have shown that astrocytes from
the midbrain inhibited neuronal α-synuclein aggregation and its transmission to other cells
in a paracrine mode, resulting in attenuation of the α-synuclein-induced toxicities. Similar
observations were made in an in vivo PD mouse model in which transplantation of healthy
midbrain astrocytes into the midbrain of the α-synuclein expressing PD mice attenuated
α-synuclein pathology and dopaminergic toxicity [57].
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The astrocytic autophagy-lysosomal function could also be targeted to eliminate α-
synuclein since this astrocytic function is important in the degradation of α-synuclein
taken up by astrocytes. Moreover, the efficiency of this pathway is dependent on the
astrocytic function of ATP13A2 [58], mutations of which are linked to autosomal recessive
PD pathology, supporting the role of ATP13A2 in astrocytic lysosomal degradation of
α-synuclein aggregates. The functional role of ATP13A2 in astrocytes is discussed in the
next section.

2.3. ATP13A2

ATP13A2, encoded by PARK9, is a transmembrane lysosomal ATPase. It is highly
expressed in the brain, particularly in the substantia nigra pars compacta [59], consistent
with involvement in the pathophysiology of PD. Mutations in the PARK9 gene impair
lysosomal functions and are linked to autosomal recessive early-onset parkinsonism [59,60].
The ATP13A2 mutations lead to abnormal α-synuclein aggregation and oxidative stress in
mitochondria [61].

ATP13A2 regulates the astrocytic uptake and degradation of α-synuclein released
by neurons. Loss-of-function mutations in ATP13A2 impair α-synuclein clearance by
astrocytes and lead to the activation of nod-like receptor protein 3 (NLRP3) inflammasomes
in astrocytes [61]. Given the protective role of astrocytes in decreasing the neuronal
accumulation of α-synuclein, these protective functions are decreased in astrocytes carrying
ATP13A2 mutations, resulting in increased accumulation and propagation of α-synuclein,
as was demonstrated when induced pluripotent stem cell (iPSC)-derived dopaminergic
neurons were cocultured with astrocytes from either healthy subjects, or patients carrying
mutations in lysosomal ATP13A2 [58].

2.4. LRRK2

LRRK2, encoded by the PARK8 gene, is a large 286 kDa protein with dual kinase and
GTPase activity [62,63]. It regulates multiple functions, such as trafficking, stress response,
autophagy, and inflammation [64–66]. Mutations in LRRK2, such as G2019S, R1441C/G/H,
and I2020T, are the most common genetic cause of late-onset PD [67]. They are autosomal
dominant [62,68] and induce hyper LRRK2 kinase activity. Activation of the LRRK2 kinase
activity, even independent of its mutations, is also known to contribute to the pathogenesis
of idiopathic PD [69], implicating LRRK2 in both familial and sporadic PD cases. LRRK2 is
expressed in neurons, astrocytes, and microglia in the human brain [70], with astrocytic
LRRK2 being localized primarily in lysosomes to regulate lysosome size, number, and
function, as well as the autophagy-lysosomal pathway for the degradation and recycling
of cellular components [14,15,66]. In physiological conditions, autophagy proceeds with
the lipidation of the LC3-I protein to the LC3-II protein, which is then transported to the
membrane of autophagic vesicles for the normal autophagy process. However, increasing
LRRK2 kinase activity decreases the lipidation of LC3-I in primary mouse astrocytes [14],
leading to dysregulation of autophagosome formation.

G2019S, R1441C, and Y1699C LRRK2 mutations induce enlarged lysosomes in as-
trocytes, impair lysosomal degradation of long-lived and damaged proteins, and reduce
lysosomal pH due to increased LRRK2 kinase activity [15].

Interestingly, while “normal” astrocytes express low levels of α-synuclein, cultured
iPSC-derived astrocytes carrying the PD LRRK2 G2019S mutation exhibit progressive en-
dogenous α-synuclein accumulation, dysfunctional chaperone-mediated autophagy, and
impaired macroautophagy, resulting in the decreased astrocytic ability to clear neuronal-
derived extracellular α-synuclein aggregates when co-cultured with WT dopaminergic neu-
rons [71]. Moreover, astrocytes with the LRRK2 G2019S mutation transferred α-synuclein
to neighboring neurons, leading to α-synuclein accumulation and neurodegeneration,
suggesting that LRRK2 mutated astrocytes can mediate toxicity in the course of PD patho-
genesis [71].
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Moreover, astrocytes with LRRK2 G2019S mutation show dysregulation of the actin-
binding protein annexin A2, which is also a novel player in α-synuclein internalization
by astrocytes, resulting in impairment of the astrocytic endo-lysosomal pathway to clear
extracellular fibrillar α-synuclein [72].

2.5. PINK1 and Parkin
2.5.1. PINK1

PINK1, encoded by the PARK6 gene, is a protein involved in mitophagy, a process that
selectively degrades damaged mitochondria following mitochondrial stress [73]. PINK1
loss-of-function mutations are linked to recessive PD cases [74]. The role of astrocytic PINK1
is underscored by the findings that activation of PINK1 by mitochondrial injury occurs
predominantly in astrocytes among all neural cell types in the CNS [68], while it is almost
absent in neurons [75]. This suggests that astrocytes represent a key neural cell type affected
by PINK1 deficiency in familial PD cases [68]. Conditioned media from LPS/IFN-γ-treated
PINK1-deficient astroglia induced a higher apoptotic rate in neurons compared to media
from treated WT astroglia, suggesting that astrocytic PINK1 is important to protecting
neurons against apoptotic neuronal injury [76]. Additionally, PINK1 expression in the brain
is increased during embryonic development and has an important role in the development
of astrocytes [77] and the cyto-protection against oxidative stress-induced apoptosis [76].

2.5.2. Parkin

Parkin, encoded by PARK2, is a cytoplasmic E3 ubiquitin ligase that plays a crucial
role in mitophagy and clearance of reactive oxygen species (ROS) [78]. Parkin mutations are
well known to be linked to the autosomal recessive PD. Constitutive Parkin expression is
high in neurons as compared with astrocytes, but unfolded protein stress elicits a selective
increase in astrocytic Parkin expression and a change in its distribution, while neuronal
Parkin remains largely unchanged. Moreover, in stress conditions that cause unfolded
protein production, protein levels of Parkin increase in astrocytes, but not in neurons,
leading to neuroprotective effects and thus decreasing neuronal injury [79], suggesting the
astrocytic Parkin’s role in neuroprotection against stress condition, and pathogenic role of
astrocytes in PD carrying a Parkin mutation. In mouse primary midbrain astrocyte cultures,
Parkin deficiency led to the presence of fewer astrocytes by reducing their proliferation
and increasing proapoptotic protein expression compared to WT controls. In addition,
astrocytic Parkin deficiency caused structural mitochondrial defects [8], and exacerbated
α-synuclein-induced impairment of mitochondrial respiration [80].

2.5.3. PINK1/Parkin Mitophagy

PINK1 is well known to play a critical role in mitophagy, in collaboration with Parkin
in the PINK1-Parkin mitophagy pathway, which removes damaged mitochondria [81].
PINK1 activity induces Parkin translocation from the cytosol into mitochondria to bind
depolarized mitochondria [81]. Transcellular mitophagy (transmitophagy), which is a
mitochondrial transfer from neurons to astrocytes in the context of neuronal injury, occurs
primarily in neighboring astrocytes to degrade axonal mitochondria [82]. Trans-neuronal
mitophagy occurs in in vivo rat and mouse PD models [83], and astrocytes are the primary
cell type responsible for the clearance of damaged mitochondria from neurons. These
findings suggest that boosting PINK1/Parkin-mediated mitophagy in striatal astrocytes
may help with the removal of damaged mitochondria in dopaminergic neurons.

Moreover, optimal mitophagy function can eliminate dysfunctional mitochondria to
maintain mitochondrial homeostasis and protect against neuroinflammatory activation
induced by ROS [84], indicating that impaired mitophagy induced by mutations in PINK1
and Parkin can provoke inflammatory activation in astrocytes [40]. There is a possible
correlation between mitochondria perturbations and astrocyte inflammatory activation.
Impaired mitophagy from PINK1 or Parkin mutations in neurons and glia may promote
mitochondrial fragmentation and enhance inflammatory responses in astrocytes, leading
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to the potentiation of inflammatory activation and dysfunction of neighboring cells. Thus,
the removal of damaged mitochondria from astrocytes may be broadly neuroprotective
and beneficial against undesired chronic neuroinflammation in PD [85].

Impaired PINK1/Parkin-mediated mitophagy can trigger NLRP3 and other inflamma-
tory pathways [85] by the mitochondria-specific lipid cardiolipin. Mitochondrial depolar-
ization results in the translocation of cardiolipin from the inner mitochondrial membrane
to the outer mitochondrial membrane, where it associates with NLRP3 [86]. An attractive
hypothesis is that in PINK1 and Parkin mutant astrocytes, elevated levels of mitochondrial
ROS and cardiolipin result in the sustained activity of the NLRP3 inflammasome. Notably,
there are reports indicating that in vitro PINK1/Parkin mitophagy can be inhibited upon
inflammasome activation since Parkin can be cleaved by caspase-1 and caspase-8 [87,88].
Collectively, these studies demonstrate the crucial role that mitochondria play in the activa-
tion of NLRP3 and underline the PINK1/Parkin pathway of mitophagy as a key mechanism
limiting excessive inflammation and preserving CNS homeostasis.

Impaired mitophagy in Parkin- and PINK1-deficient astrocytes might further lead
to a decrease in astrocyte proliferation and decreased GFAP-positive astrocytes in the
substantia nigra, potentially contributing to the development of PD due to the delay of
astrocyte-mediated repair of the brain microenvironment [10,77].

2.6. Glucocerebrosidase

Glucocerebrosidase (GCase), encoded by the GBA1 gene, is a lysosomal enzyme that
is involved in glycolipid metabolism. Heterozygous carriers of specific mutations in this
gene are at an elevated risk of developing PD [89]. Human and murine astrocytes express
high levels of this protein, suggesting its critical role in this cell type [90].

GCase is involved in lysosomal function, playing a role in autophagy. The iPSC-
derived astrocytes carrying mutations in the GBA1 gene exhibited astrogliosis with im-
paired lysosomal cathepsin activity, resulting in the accumulation of α-synuclein aggre-
gates [91]. These results are supported by other studies reporting that GBA-deficient
primary astrocytes showed defective autophagic and proteasomal machinery [92]. GBA-
deficient mice also showed impairment of their autophagic pathway, as evidenced by
reductions in both LC3-I and LC3-II fragmentation [93]. These studies demonstrate that
astrocytic GCase plays a role in autophagy, and its functional deficiency due to mutations
can result in the accumulation of toxic proteins in astrocytes, thus indirectly causing neu-
rotoxicity. On the other hand, mutation of GBA1 in mouse primary astrocytes did not
affect the degradation of α-synuclein, despite resulting in a decrease in lysosomal protease
activity [94]. This indicates that the effects of astrocytic GBA1 deficiency could differ
depending on the experimental setting, although the astrocytic role of GCase function in
autophagy is consistent.

GCase-deficient astrocytes due to either GBA1 mutations or deletion are closely asso-
ciated with astrogliosis and neurodegeneration in a mouse model [95]. Moreover, GBA1-
deleted mice exhibited astroglial activation within the nigrostriatal pathways, accompanied
by the accumulation of α-synuclein aggregates [96]. Abnormal α-synuclein accumulation
was also detected clinically in post-mortem brain tissue from patients carrying a mutant
GBA1 [89,97]. These findings suggest that GBA1-mutated astrocytes play a pathogenic
role in astrocytic inflammatory responses, possibly contributing to neuronal injury and an
increased risk of PD. Moreover, GBA1 mutations in primary astrocytes decreased immune
responses by reducing several pro-inflammatory cytokines when exposed to LPS [94]. Al-
though the role of GBA1 mutation-induced decrease in the production of cytokines in PD is
not well understood at present, it may be similar to the decreased cytokine responsiveness
observed in aging, which is the greatest risk for PD. GBA1 mutation-induced immune
response dysregulation in astrocytes was normalized by inhibiting LRRK2 kinase activity,
indicating functional intracellular crosstalk between GCase and LRRK2 in astrocytes [94].

GCase also plays a role in maintaining mitochondrial functions, such as mitophagy
in astrocytes [92]. GBA1-deficient mouse primary astrocytes exhibited mitochondrial
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dysfunction characterized by reduced ATP generation, decreased membrane potential, and
mitochondrial fragmentation, possibly due to impaired mitophagy caused by lysosomal
defect [92,93].

2.7. Prospectives

Astrocyte reprogramming studies have shown some promising strategies by which
astrocytes in the CNS can be transformed into functional neurons. These strategies are
applicable to many gene mutations related to PD, including those in the α-synuclein gene
(reviewed in [98]). Reprogramming methods, targeting specific transcription factors and
mRNAs by modulating astrocytic microRNA (miRNA) mechanisms in the mouse brain,
have been able to reprogram astrocytes into functional dopaminergic neurons (reviewed
in [99]).

3. The Dysregulations of Astrocytic Cellular and Molecular Mechanisms in
Experimental PD Models

The protective role of astrocytes for dopaminergic neurons in PD is well established
by several studies. For example, 6-OHDA-induced dopaminergic neurodegeneration was
exacerbated in the absence of astrocytic function, which was induced by chronic infusion
of fluorocitrate into the substantia nigra of the rat brain [100]. Moreover, without astrocytic
support, the substantia nigra displayed a higher microglial activation and reduced survival
capability of the dopaminergic system in the 6-OHDA rat model [100]. This indicates that
dopaminergic neurons in the substantia nigra pars compacta are more vulnerable to PD
toxicants in the absence of astrocytic support. Extensive studies have been conducted to
determine the astrocytic factors that modulate PD development. These include oxidative
stress, inflammation, synaptic dysfunction, endoplasmic reticulum (ER) stress, trophic fac-
tor reduction, and apoptosis in astrocytes. PD neurotoxicants, such as paraquat, 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP+), 6-
OHDA and rotenone, have been extensively studied in astrocytes, in addition to neurons,
to understand the role of astrocytes in the pathogenesis of idiopathic PD [37,38,101,102].
The following sections will focus on how these neurotoxins contribute to PD pathogenesis
by affecting astrocytic cellular and molecular mechanisms.

3.1. The Role of Astrocytic Oxidative Stress in PD Development

Oxidative stress is a well-known important contributor to the progression of neurode-
generative disorders [103]. ROS are mainly produced in the mitochondria via oxidative
phosphorylation and electron transfer reactions. Abnormal ROS production causes ex-
cessively abnormal peroxidation of lipids and proteins, resulting in DNA oxidation and
strand breakage, leading to cellular injury. It has been shown that PD patients’ blood
and cerebrospinal fluid (CSF) have higher levels of oxidative stress compared to healthy
subjects [103]. Causal factors of PD-related oxidative stress may include (1) impairment of
mitochondrial function and degradation through genetic mutations and various toxicities
and (2) dysregulation of antioxidant defense capabilities in the brain.

ROS produced by astrocytes are implicated in oxidative stress in various PD mod-
els, including primary neurons and astrocytes [103–106], leading to neuronal injury and
PD-like neurological deficits in animals. Most PD-like neurotoxicants, such as rotenone,
MPTP/MPP+, and 6-OHDA, trigger ROS production in astrocytes [13,38,107–111], and the
ROS production is likely derived from the impaired mitochondrial function and dysregu-
lated astrocytic antioxidant defense mechanisms.

Dysregulation of the astrocytic antioxidant system is well known to augment neuronal
stress responses in primary astrocyte and mouse PD models [112]. Studies have shown
that the expression of the antioxidant transcription factor Nrf2 and its target genes in
astrocytes is reduced in an MPTP-induced PD mouse model [113], while overexpression
of astrocytic Nrf2 protects neurons against MPTP-induced dopaminergic neurotoxicity in
mice [113]. Activation of astrocytic Nrf2 also attenuated 6-OHDA-induced neurotoxicity
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in rats and Drosophila [114]. Moreover, the mutation of DJ-1, which causes an autoso-
mal recessive PD, is closely associated with Nrf2 dysfunction. This is supported by the
findings that DJ-1-deficient or -mutated astrocytes caused Nrf2 instability, reducing its
transcriptional activities [115], and abolished astrocyte-mediated neuroprotection against
PD [13,38]. However, DJ-1 overexpression in astrocytes protected dopaminergic neurons
against rotenone-induced neurotoxicity in the substantia nigra of rat brain [107], suggesting
that astrocytic oxidative stress plays a critical role in PD, at least in part by dysregulating
Nrf2 and DJ-1. In addition, the co-culturing of primary rat astrocytes with neurons in-
creased neuronal glutathione (GSH), preventing paraquat-induced damage to neurons [112].
Moreover, 6-OHDA-induced neuronal death was exacerbated in mesencephalic cultures
pre-cultured with GSH-depleted astrocytes, but not complex I-inhibited astrocytes, com-
pared to co-culturing with normal astrocytes. MPTP-induced neurotoxicity in mice was
exacerbated by a deficiency in astrocytic SMP30, an essential component of the antioxidant
vitamin C production [116]. These findings suggest that excessive astrocytic ROS may in-
crease neuron vulnerability [117] and that enhancing astrocyte antioxidant defense systems
could be an effective strategy for reducing oxidative stress in PD.

3.2. The Role of Astrocytic Inflammation in PD Development

Inflammation was first observed in the substantia nigra pars compacta of PD patients
in the 1980s [118]. Later, more studies demonstrated that post-mortem brains, CSF, and
serum of PD patients showed higher levels of proinflammatory cytokines, such as inter-
leukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-2, and IL-6, compared to those in healthy
controls [119]. Although microglia are well-known inflammatory cytokine producers, as-
trocytes also release cytokines and inflammatory mediators under toxic conditions, leading
to inflammation and cell death in dopaminergic neurons [120–122]. Numerous studies
have reported the involvement of astrocytes in the MPTP neurotoxicity model, as MPTP
triggered proinflammatory astrocytic activation and subsequent neurotoxicity [121]. This
was supported by the findings that the inhibition of astrocytic activation in mice with ip-
takalim attenuated MPP+-induced astrocytic inflammation as well as dopaminergic toxicity
in the substantia nigra [121]. By using ALDH1L1 bacTRAP mice to identify genes being
expressed in astrocytes, MPTP was observed to induce the production of the cytokines
IL-1β, TNF-α, and CCL4 [123]. In addition to producing cytokines, evidence has shown that
inflammatory reactive astrocytes amplify microglial activation under MPTP exposure [120],
suggesting that astrocyte-microglia crosstalk contributes to neuroinflammation. Arundic
acid, which exclusively suppresses astrocyte activation [124], attenuated MPTP-induced
reactive astrocytes and dopaminergic neurotoxicity in mice [101,125]. Another PD toxin,
6-OHDA, was also shown to increase inflammatory astrocyte reactivity and expression of
proinflammatory molecules, including inducible nitric oxide synthase (iNOS), nitric oxide
(NO), cyclooxygenase 2 (COX-2), prostaglandin E2, and TNF-α in primary astrocytes [126].
A role for iNOS is indicated as its inhibition attenuated 6-OHDA-induced mitochondrial
impairment and apoptosis in C6 astrocytes [127]. These findings indicate that astrocytes
play a substantial role in mediating neurodegeneration via inflammation [102].

Studies have shown that astrocytic aquaporins and secretogranins are involved in the
production of bioactive compounds from the cells in PD models. Paraquat at high exposure
concentrations increased the expression of both secretogranin II and IL-6 and their colocal-
ization in U118 astrocytes [47], while inhibition of secretogranin II decreased IL-6 protein
levels in astrocytes, suggesting that astrocytic secretogranin could influence inflammation
by regulating IL-6 production and release. Moreover, AQP4, a water-selective membrane
channel regulating BBB permeability and immune response, is involved in MPTP-induced
production of IL-1β and TNF-α in primary astrocyte cultures [120]. This is supported by
the results that deletion of AQP4 exacerbated inflammatory astrocyte reactivity and levels
of these cytokines, along with enhanced NF-κB activation in MPP+-treated astrocytes [120]
and amplified microglial activation in astrocyte-microglia co-cultures. These data indicate
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that astrocytic aquaporins play a critical role in the attenuation of astrocytic inflammation
and microglial activation, serving as a potential target for treating MPTP neurotoxicity.

3.3. Dysregulation of Astrocytic Degradation of Damaged Proteins in PD Development

Eliminating protein aggregates, such as the Lewy bodies that can be formed by mis-
folded α-synuclein, is essential for the cell’s health and physiological functions [128].
Several biological processes degrade damaged proteins and toxic substances, including
endo-lysosomes, autophagy, and the ubiquitin-proteasomal pathway [129]. Given that
α-synuclein could spread from neurons to astrocytes [56,130], astrocytes play a crucial role
in removing α-synuclein via the activation of lysosomes and lysosomal enzymes [131].

Accumulating evidence suggests that astrocytes play a major role in removing accu-
mulated debris caused by the degeneration of synapses and axons of dopaminergic neurons
in a PD animal model [132]. Astrocytes can take up extracellular debris and damaged
components via phagocytosis and endocytosis [56,133] and degrade these materials in
lysosomes [134]. PD-related mutations in LRRK2, such as G2019S, R1441C, and Y1699C,
cause lysosomal defects and abnormal lysosomal morphology that reduce degradative
capacity in astrocytes [15], leading to the accumulation of cellular debris and cell death in
astrocytes. A similar reduction in autophagic capacity in astrocytes is caused by neurotoxi-
cants that produce PD-like symptoms, such as rotenone and paraquat. High concentrations
of paraquat initially activate autophagy in astrocytes but subsequently reduce autophago-
some formation and autophagic flux, leading to the accumulation of toxic substances in
astrocytes [135]. These toxic substances can spread to neighboring cells, including neurons,
by several mechanisms, such as exosomal propagation [136], passive transport [133], direct
contact, and tunneling [137].

As described in earlier sections, loss-of-function mutations in ATP13A2 (PARK9) are
associated with PD (for a review, see [138]). In physiological conditions, ATP13A2 regu-
lates the formation and secretion of intraluminal vesicles and exosomes [138]. However,
ATP13A2 mutations cause abnormal α-synuclein accumulation in neurons [139,140]. More-
over, ATP13A2 mutations reduce the ability of astrocytes to eliminate α-synuclein, resulting
in α-synuclein accumulation in astrocytes and interneuronal transfer of α-synuclein in iPSC-
derived dopaminergic neurons, damaging neurons in the astrocyte-neuron co-culture [58].

Rotenone induces inflammatory reactive astrocytes, and phosphorylated α-synuclein
aggregates in dopaminergic neurons prior to dopaminergic neuronal loss in the substantia
nigra [141], indicating that activation of astrocytes and aggregation of phosphorylated
α-synuclein precede neuronal loss in rotenone neurotoxicity.

These findings indicate that targeting astrocytic degradation and clearance of protein
aggregates could be an important therapeutic strategy for preventing the accumulation of
toxic substances in PD.

3.4. The Role of Astrocytes in Inducing Excitotoxicity in PD Development

Glutamate is the main excitatory neurotransmitter in the CNS, inducing excitatory
synaptic transmission, followed by its uptake into the adjacent astrocytes [142]. Studies
have shown that excessive glutamate neurotransmission may be involved in PD pathogen-
esis, as the N-methyl-D-aspartate (NMDA) receptor antagonist, Ro 25–6981, attenuated
Parkinsonian motor symptoms in the MPTP-induced PD mouse model [143].

Astrocytes maintain proper homeostasis of glutamate neurotransmission via glutamate-
glutamine metabolism and glutamate uptake from the synaptic cleft via glutamate trans-
porters, such as GLAST (EAAT1) and GLT-1 (EAAT2). Accordingly, the dysregulation of
astrocytic glutamate transporters may lead to excessive glutamate accumulation in the
extracellular synaptic cleft, leading to overstimulation of postsynaptic glutamate receptors
and, thus, excitotoxic neuronal cell death. Although glutamate uptake cannot be measured
in the brain of PD patients while alive, studies have shown that PD patients had a 48%
(p < 0.0001) lower glutamate uptake in platelets compared to healthy controls [144], which
correlated with increased severity of parkinsonian symptoms (p < 0.05). Although there
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is no report linking platelet glutamate uptake to astrocytic glutamate uptake, this finding
implicates the potential dysfunction of glutamate uptake in PD.

Studies have shown that PD-related gene mutations, such as DJ-1 and LRRK2, are
associated with impaired glutamate uptake in astrocytes resulting from impaired GLT-1
trafficking and localization and transcriptional repression [12,145]. The LRRK2 G2019S
mutation decreased EAAT2 expression in PD human brains [145]. LRRK2 G2019S also
reduced GLT-1 in the striatum of mice and primary astrocytes at the transcriptional and
posttranslational levels, leading to a reduction in glutamate uptake [145]. Moreover, LRRK2
G2019S caused GLT-1 sequestration in Rab4-positive vesicles, preventing GLT-1 localization
in the plasma membrane of primary astrocytes [145], leading to abnormal GLT-1 trafficking
and increased degradation [12]. Nedd-4-mediated ubiquitination of GLT-1 decreased
GLT-1 expression in an MPTP-PD mouse model, while its knockdown reversed the MPTP-
induced decrease in GLT-1 expression and reduced both motor deficits and dopaminergic
cell loss [146]. A 6-OHDA decreased striatal GLT-1 levels along with an increase in PD-like
deficits [147]. Paraquat and MPTP also reduced astrocytic GLT-1 expression as well as
glutamate uptake and led to dopaminergic neurotoxicity in mice [142]. In addition, an
upregulation of EAAT2 increased glutamate uptake in human U251 astrocytes and afforded
more protection against 6-OHDA toxicity in the neuroblastoma SH-SY5Y cell line [148].

3.5. Dysregulation of Astrocytic Growth Factor Synthesis in PD Development

Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), ciliary neu-
rotrophic factor (CNTF), epidermal growth factor (EGF), acidic fibroblast growth factor
(FGF), insulin-like growth factor (IGF), transforming growth factor-alpha (TGF-α), and glial
cell line-derived neurotrophic factor (GDNF), have been shown to promote neuronal health
and survival (for review, see [149]). Studies have shown that BDNF and nerve growth factor
concentrations were decreased in the substantia nigra in PD patients [150,151], suggesting
that growth factors were decreased in the PD brain.

Enhancing astrocytic levels of BDNF and GDNF ameliorated dopamine neurodegen-
eration induced by MPP+ in rat-derived primary cultures of astrocytes and neurons [152],
underscoring the role of astrocytic growth factors in neuroprotection. In the 6-OHDA PD
animal model, astrocytic trophic factors were decreased, which contributed to neuronal in-
jury. This is supported by the result that 6-OHDA inhibited ATP-dependent Ca2+ signaling,
which is critical for trophic factor production in astrocytes [153]. It is well established that
astrocytes afford a protective role in PD by supplying neurotrophic factors, such as nerve
growth factor and BDNF [154], and that these protective effects are decreased in advanced
PD [155].

Astrocytic growth factors induce neuroprotection by multiple cellular mechanisms.
Healthy astrocytes elicit protective effects against MPTP-induced inflammation via IGF-
1, IGF-1 receptor, and G protein-coupled estrogen receptor (GPER) in mice [156]. As-
trocytic IGF-1 has been shown to attenuate MPP+-induced upregulation of COX-2 and
iNOS protein levels in primary astrocytes by binding to the IGF-1R and activating the
GPER/PI3K/MAPK signaling pathway [156]. Astrocytic GDNF and BDNF have also been
reported to protect neurons against 6-OHDA toxicities [157,158], although the efficacies
of these trophic factors have not been conclusive [159,160]. The mesencephalic astrocyte-
derived neurotrophic factor (MANF) [161] has been shown to offer neuroprotection in PD
6-OHDA-treated neuronal cell lines, exerting antioxidative stress, anti-inflammation, and
antiapoptotic properties [122,162–164], as well as increasing antioxidant proteins Nrf2/HO-
1 and Wnt signaling [122]. These findings imply that a reduction in astrocytic trophic
factors contributes to adjacent neuronal injury, leading to exacerbation of nigrostriatal
dopaminergic neurodegeneration in PD [117,153].

3.6. The Role of Astrocytic ER Stress in PD Development

In healthy cells, the ER regulates protein folding and trafficking, and thus, acute
perturbations to ER homeostasis can alter the folding process, causing ER stress and
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inducing the unfolded protein response (UPR) to restore ER homeostasis and function [165].
However, chronic ER stress could lead to the accumulation of unfolded proteins, such as
α-synuclein, and prolonged UPR activity can result in apoptotic cell death. PD brain tissues
have shown accumulation of α-synuclein in the ER [166,167], suggesting that chronic ER
stress is associated with α-synuclein misfolding and accumulation.

It has been shown that astrocytic ER stress triggered by excessive α-synuclein up-
take leads to Golgi apparatus fragmentation and apoptosis in primary rat astrocytes [168].
Excessive α-synuclein impairs the normal degradation process in astrocytes, leading to
higher α-synuclein accumulation in the trans-Golgi network and ER stress [137]. Moreover,
LRRK2 G2019S mutation caused ER stress and apoptosis in astrocytes [169] by impairing
the sarco/ER Ca2+-ATPase, resulting in reduced ER Ca2+ levels. It also increased ER-
mitochondria interaction, resulting in mitochondrial dysfunction [169]. This suggests that
LRRK2 mutations increase the susceptibility of astrocytes to ER stress and mitochondrial
dysfunction. Importantly, there was no significant effect on ER stress in LRRK2 G2019S
neurons, but wild-type neurons co-cultured with LRRK2 G2019S astrocytes sustained more
neuronal injury after α-synuclein treatment [169]. These results indicate that ER stress in
astrocytes and neurons is differently affected by LRRK2 G2019S mutation, highlighting the
role of astrocytic LRRK2 G2019S mutation and ER stress contributing to PD development.
Moreover, astrocytic ER stress increases the production of proinflammatory cytokines and
chemokines and also activates inflammatory microglia via paracrine signaling [169], indi-
cating that astrocytic ER stress induces inflammatory astrocytic dysfunction and triggers
adjacent microglial activation, which may lead to neuronal injury.

3.7. The Role of Astrocytic Apoptosis in PD Development

Astrocytic apoptosis could cause harmful damage to the surrounding neurons by
releasing toxic astrocytic components and proinflammatory factors [170]. Astrocytic apop-
tosis can also impair astrocyte-neuron networks and destabilize synaptic neurotransmission,
thus contributing to neuronal cell death. Prolonged astrocytic dysfunction and degenera-
tion accelerated neuronal injury in the substantia nigra in a 6-OHDA PD rat model [100],
indicating that astrocytic apoptosis could be an important contributor to PD pathology.
Astrocytic apoptosis is caused by various cellular dysregulations, including oxidative
stress, mitochondrial dysfunction, inflammation, disrupted Ca2+ homeostasis, membrane
instability, and ER stress [168,171,172]. Rotenone causes astrocytic apoptosis, at least in
part, by reducing astrocytic connexin 43 and increasing membrane and gap junction perme-
ability [173]. Given that dysregulated gap junctions play an important role in neurological
disorders, such as AD, HD, ischemia, and PD [173–175], and that connexins are critical
in maintaining gap junctions to allow direct intercellular communication between adja-
cent cells [176], rotenone-induced dysfunctional gap junctions in astrocytes may cause
the leakage of toxic substances to adjacent neural cells, including dopaminergic neurons.
Astrocytic activation can lead to astrocyte apoptosis and stimulate microglial activation via
cytokine and chemokine communication, indicating that the activation of astrocytes and
microglia are closely connected to each other [177]. Major histocompatibility complex II
levels were increased and mainly found in midbrain astrocytes and microglia rather than in
neurons of the PD MPTP mouse model [178]. In addition, astrocytic apoptosis diminishes
astrocyte-induced neuroprotection and antioxidant support to neurons, increasing neuronal
susceptibility to toxic insults. These indicate that inhibiting astrocytic apoptosis might be
an important therapeutic target to provide neuroprotection against PD insults.

4. Conclusions

In summary, astrocytes are essential neural cell types that protect neurons against
PD-inducing insults. Healthy astrocytes exert their neuroprotective effects by releasing
neurotrophic factors, producing antioxidants, reducing proinflammatory cytokines, and
removing toxic aggregates such as α-synuclein and damaged mitochondria. However,
astrocytic dysfunctions, such as oxidative stress, inflammation, autophagy impairment, and
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apoptosis, are commonly observed in pathological conditions in gene mutations associated
with PD, such as DJ-1, α-synuclein, LRRK2, PINK1, and parkin, as well as experimental
PD models using toxicants, such as paraquat, rotenone, MPTP/MPP+, and 6-OHDA
(Figure 1). Understanding astrocytes’ cellular and molecular responses in these PD models
will greatly contribute to the development of PD therapeutics targeting astrocytes. In
addition, the findings suggest that complex pathways are involved in PD pathology, and
thus, a combination of approaches may be required for therapeutic intervention.
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